Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 13(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667045

ABSTRACT

The compounds present in hemp show multidirectional biological activity. It is related to the presence of secondary metabolites, mainly cannabinoids, terpenes, and flavonoids, and the synergy of their biological activity. The aim of this study was to assess the activity of the Henola Cannabis sativae extract and its combinations with selected carriers (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, magnesium aluminometasilicate, and hydroxypropyl-ß-cyclodextrin) in terms of antimicrobial, probiotic, and immunobiological effects. As a result of the conducted research, the antimicrobial activity of the extract was confirmed in relation to the following microorganisms: Clostridium difficile, Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus pyrogenes, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aereuginosa, and Candida albicans (microorganism count was reduced from ~102 CFU mL-1 to <10 CFU mL-1 in most cases). Additionally, for the system with hydroxypropyl-ß-cyclodextrin, a significant probiotic potential against bacterial strains was established for strains Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus, Lactobacillus reuteri, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus fermentum, and Streptococcus thermophilus (microorganism count was increased from ~102 to 104-107). In terms of immunomodulatory properties, it was determined that the tested extract and the systems caused changes in IL-6, IL-8, and TNF-α levels.

2.
Antioxidants (Basel) ; 13(3)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38539890

ABSTRACT

This study investigates the potential of formulated systems utilising haskap berry leaf extracts and dextran as carriers, to modulate both antioxidant and enzymatic inhibitory activities and their impact on the growth of specific bacterial strains. The analysis of antioxidant capacity, assessed through ABTS, CUPRAC, DPPH, and FRAP assays, revealed varying but consistently high levels across extracts, with Extract 3 (loganic acid: 2.974 mg/g, chlorogenic acid: 1.125 mg/g, caffeic acid: 0.083 mg/g, rutin: 1.137 mg/g, and quercetin: 1.501 mg/g) exhibiting the highest values (ABTS: 0.2447 mg/mL, CUPRAC: 0.3121 mg/mL, DPPH: 0.21001 mg/mL, and FRAP: 0.3411 mg/mL). Subsequent enzymatic inhibition assays demonstrated a notable inhibitory potential against α-glucosidase (1.4915 mg/mL, expressed as acarbose equivalent), hyaluronidase (0.2982 mg/mL, expressed as quercetin equivalent), and lipase (5.8715 µg/mL, expressed as orlistat equivalent). Further system development involved integration with dextran, showcasing their preserved bioactive compound content and emphasising their stability and potential bioactivity. Evaluation of the dextran systems' impact on bacterial growth revealed a significant proliferation of beneficial strains, particularly the Bifidobacterium and lactobacilli genus (Bifidobacterium longum: 9.54 × 107 to 1.57 × 1010 CFU/mL and Ligilactobacillus salivarius: 1.36 × 109 to 1.62 × 1010 CFU/mL), suggesting their potential to modulate gut microbiota. These findings offer a foundation for exploring the therapeutic applications of haskap berry-based dextran systems in managing conditions like diabetes, emphasising the interconnected roles of antioxidant-rich botanical extracts and dextran formulations in promoting overall metabolic health.

3.
Plants (Basel) ; 12(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140479

ABSTRACT

The objective of this study was to comprehend the efficiency of wheat regeneration, callus induction, and DNA methylation through the application of mathematical frameworks and artificial intelligence (AI)-based models. This research aimed to explore the impact of treatments with AgNO3 and Ag-NPs on various parameters. The study specifically concentrated on analyzing RAPD profiles and modeling regeneration parameters. The treatments and molecular findings served as input variables in the modeling process. It included the use of AgNO3 and Ag-NPs at different concentrations (0, 2, 4, 6, and 8 mg L-1). The in vitro and epigenetic characteristics were analyzed using several machine learning (ML) methods, including support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor classifier (KNN), and Gaussian processes classifier (GP) methods. This study's results revealed that the highest values for callus induction (CI%) and embryogenic callus induction (EC%) occurred at a concentration of 2 mg L-1 of Ag-NPs. Additionally, the regeneration efficiency (RE) parameter reached its peak at a concentration of 8 mg L-1 of AgNO3. Taking an epigenetic approach, AgNO3 at a concentration of 2 mg L-1 demonstrated the highest levels of genomic template stability (GTS), at 79.3%. There was a positive correlation seen between increased levels of AgNO3 and DNA hypermethylation. Conversely, elevated levels of Ag-NPs were associated with DNA hypomethylation. The models were used to estimate the relationships between the input elements, including treatments, concentration, GTS rates, and Msp I and Hpa II polymorphism, and the in vitro output parameters. The findings suggested that the XGBoost model exhibited superior performance scores for callus induction (CI), as evidenced by an R2 score of 51.5%, which explained the variances. Additionally, the RF model explained 71.9% of the total variance and showed superior efficacy in terms of EC%. Furthermore, the GP model, which provided the most robust statistics for RE, yielded an R2 value of 52.5%, signifying its ability to account for a substantial portion of the total variance present in the data. This study exemplifies the application of various machine learning models in the cultivation of mature wheat embryos under the influence of treatments and concentrations involving AgNO3 and Ag-NPs.

4.
Plants (Basel) ; 12(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37896044

ABSTRACT

Field pansy infestation can lead to a decrease in the species diversity of plant communities and to the disappearance of other species. Field pansy infestation is fairly common in many crops, including maize. Understanding the ecology and management strategies for field pansy in maize is essential for effective weed control. This research into sugar maize was conducted from 1992 to 2019 in the Research and Education Center Gorzyn, Zlotniki branch, which belongs to the Poznan University of Life Sciences. The assessment of weed infestation was carried out in experiments that focused on chemical weed control in maize. The experiments were established as single-factor randomized block designs with four field replications. The aim of the study was to evaluate dynamic changes in the status and the degree of field pansy infestation in sugar maize that was cultivated after various other crops in the Wielkopolska region, with a focus on weather conditions. The results indicated that the probability of field pansy individuals occurring among the total number of weeds was highest when maize was cultivated after wheat, but the probability of such infestation did not significantly differ when maize was sown in a crop rotation after winter triticale.

5.
Antioxidants (Basel) ; 12(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37891906

ABSTRACT

Cannabis sativa, a versatile plant with numerous varieties, holds promising potential for a wide range of biological activity. As raw materials for research, we chose leaves and inflorescences of hemp varieties such as Bialobrzeskie, Henola, and Tygra, which are cultivated mainly for their fibers or seeds. The choice of extraction is a key step in obtaining the selected compositions of active compounds from plant material. Bearing in mind the lipophilic nature of cannabinoids, we performed supercritical carbon dioxide (scCO2) extraction at 50 °C under 2000 (a) and 6000 PSI (b). The cannabinoid contents were determined with the use of the HPLC-DAD method. The antioxidant capabilities were assessed through a series of procedures, including the DPPH, ABTS, CUPRAC, and FRAP methods. The capacity to inhibit enzymes that play a role in the progression of neurodegenerative diseases, such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase was also studied. The dominant cannabinoids in the extracts were cannabidiol (CBD) and cannabidiolic acid (CBDA). The highest concentration of eight cannabinoids was detected in the Tygra inflorescences extract (b). The most notable antioxidant properties were provided by the Tygra inflorescences extract (b). Nonetheless, it was the Henola inflorescences extract (b) that demonstrated the most efficient inhibition of AChE and BChE, and tyrosinase was inhibited the most significantly by the Bialobrzeskie inflorescences extract (b). Multidimensional comparative analysis enrolled all assays and revealed that the Henola inflorescences extract (b) showed the most substantial neuroprotective potential.

6.
Pharmaceutics ; 15(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37765249

ABSTRACT

Cannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabichromene (CBC) are lipophilic compounds with limited water solubility, resulting in challenges related to their bioavailability and therapeutic efficacy upon oral administration. To overcome these limitations, we developed co-dispersion cannabinoid delivery systems with the biopolymer polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) and magnesium aluminometasilicate (Neusilin US2) to improve solubility and permeability. Recognizing the potential therapeutic benefits arising from the entourage effect, we decided to work with an extract instead of isolated cannabinoids. Cannabis sativa inflorescences (Henola variety) with a confirming neuroprotective activity were subjected to dynamic supercritical CO2 (scCO2) extraction and next they were combined with carriers (1:1 mass ratio) to prepare the co-dispersion cannabinoid delivery systems (HiE). In vitro dissolution studies were conducted to evaluate the solubility of CBD, CBDA, and CBC in various media (pH 1.2, 6.8, fasted, and fed state simulated intestinal fluid). The HiE-Soluplus delivery systems consistently demonstrated the highest dissolution rate of cannabinoids. Additionally, HiE-Soluplus exhibited the highest permeability coefficients for cannabinoids in gastrointestinal tract conditions than it was during the permeability studies using model PAMPA GIT. All three cannabinoids exhibited promising blood-brain barrier (BBB) permeability (Papp higher than 4.0 × 10-6 cm/s), suggesting their potential to effectively cross into the central nervous system. The improved solubility and permeability of cannabinoids from the HiE-Soluplus delivery system hold promise for enhancement in their bioavailability.

7.
Antioxidants (Basel) ; 12(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37507928

ABSTRACT

Cannabis leaves contain a diverse range of antioxidants, including cannabinoids, flavonoids, and phenolic compounds, which offer significant health benefits. Utilising cannabis leaves as a source of antioxidants presents a cost-effective approach because they are typically discarded during the cultivation of cannabis plants for their seeds or fibres. Therefore, this presented study aimed to assess the antioxidant activity of the leaves of selected hemp cultivars, such as Bialobrzeska, Tygra, and Henola, based on the results obtained with the 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid, ferric reducing antioxidant power, cupric reducing antioxidant capacity, and 2,2-Diphenyl-1-picrylhydrazyl assays. The cannabinoid profile was analysed for the antioxidant activity to the contents of cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabinol (Δ9-THC), and cannabichromene (CBC), determined based on chromatographic assays. The following variables were tested: the impact of various extractants (methanol, ethanol, and isopropanol), and their mixtures (50:50, v/v, as well as extraction methods (maceration and ultra-sound-assisted extraction) significant in obtaining hemp extracts characterised by different cannabinoid profiles. The results revealed that the selection of extractant and extraction conditions significantly influenced the active compounds' extraction efficiency and antioxidant activity. Among the tested conditions, ultrasound-assisted extraction using methanol yielded the highest cannabinoid profile: CBD = 184.51 ± 5.61; CBG = 6.10 ± 0.21; Δ9-THC = 0.51 ± 0.01; and CBC = 0.71 ± 0.01 µg/g antioxidant potential in Bialobrzeska leaf extracts.

8.
Molecules ; 28(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446841

ABSTRACT

Red clover is a raw material of interest primarily due to its isoflavone content. However, other groups of compounds may affect the pleiotropic biological effects of this raw material. It is used to alleviate menopausal symptoms, but the fact that there are many varieties of this plant that can be grown makes it necessary to compare the biological activity and phytochemical composition of this plant. Also of interest are the differences between the leaves and flowers of the plant. The aim of this study was to evaluate the properties of the leaves and flowers of six clover varieties-'Tenia', 'Atlantis', 'Milena', 'Magellan', 'Lemmon' and 'Lucrum'-with respect to their ability to inhibit α-glucosidase, lipase, collagenase and antioxidant activity. Therefore, the contents of polyphenols and the four main isoflavones-genistein, daidzein, biochanin and formononetin-were assessed. The study was complemented by testing for permeability through a model membrane system (PAMPA). Principal component analysis (PCA) identified a relationship between activity and the content of active compounds. It was concluded that antioxidant activity, inhibition of glucosidase, collagenase and lipase are not correlated with isoflavone content. A higher content of total polyphenols (TPC) was determined in the flowers of red clover while a higher content of isoflavones was determined in the leaves of almost every variety. The exception is the 'Lemmon' variety, characterized by high isoflavone content and high activity in the tests conducted.


Subject(s)
Isoflavones , Trifolium , Trifolium/chemistry , Antioxidants/pharmacology , Isoflavones/pharmacology , Isoflavones/analysis , Polyphenols/pharmacology , Menopause
9.
Plants (Basel) ; 12(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111864

ABSTRACT

Low temperature (cold) and freezing stress is a major problem during winter wheat growth. Low temperature tolerance (LT) is an important agronomic trait in winter wheat and determines the plants' ability to cope with below-freezing temperatures; thus, the development of cold-tolerant cultivars has become a major goal of breeding in various regions of the world. In this study, we sought to identify quantitative trait loci (QTL) using molecular markers related to freezing tolerance in winter. Thirty-four polymorphic markers among 425 SSR markers were obtained for the population, including 180 inbred lines of F12 generation wheat, derived from crosses (Norstar × Zagros) after testing with parents. LT50 is used as an effective selection criterion for identifying frost-tolerance genotypes. The progeny of individual F12 plants were used to evaluate LT50. Several QTLs related to wheat yield, including heading time period, 1000-seed weight, and number of surviving plants after overwintering, were identified. Single-marker analysis illustrated that four SSR markers with a total of 25% phenotypic variance determination were linked to LT50. Related QTLs were located on chromosomes 4A, 2B, and 3B. Common QTLs identified in two cropping seasons based on agronomical traits were two QTLs for heading time period, one QTL for 1000-seed weight, and six QTLs for number of surviving plants after overwintering. The four markers identified linked to LT50 significantly affected both LT50 and yield-related traits simultaneously. This is the first report to identify a major-effect QTL related to frost tolerance on chromosome 4A by the marker XGWM160. It is possible that some QTLs are closely related to pleiotropic effects that control two or more traits simultaneously, and this feature can be used as a factor to select frost-resistant lines in plant breeding programs.

10.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903978

ABSTRACT

To reduce the cost of intensive herbicide application and environment pollution and enhance biological effectiveness, effective multifunction adjuvants should be used. A field study was conducted in 2017-2019 in midwestern Poland in order to assess the effects of new adjuvant formulations on the activity of herbicides. Treatments included the herbicide nicosulfuron at recommended (40 g ha-1) and reduced rates (28 g ha-1) alone and with the addition of tested MSO 1, MSO 2, and MSO 3 (differing in the type and amount of surfactants), as well as standard (MSO 4 and NIS) adjuvants. Nicosulfuron was applied once during the 3-5 leaf stage of maize. Results indicate that nicosulfuron with the tested adjuvants provided satisfactory weed control equivalent to that provided by standard MSO 4 and better than that provided by NIS. Nicosulfuron applied with the tested adjuvants led to a similar grain yield of maize as that achieved with standard adjuvant treatments and much higher than that measured in untreated crops.

11.
Plants (Basel) ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771683

ABSTRACT

The study presents the results of a 3-year field trial aimed at assessing the yield and efficiency indicators of nitrogen application in the cultivation of three maize cultivars differing in agronomic and genetic profile. The advantages of the UltraGrain stabilo formulation (NBPT and NPPT) over ammonium nitrate and urea are apparent if a maize cultivar capable of efficient nutrient uptake in the pre-flowering period and effective utilization during the grain filling stage is selected. Therefore, the rational fertilization of maize with urea-based nitrogen fertilizer with a urease inhibitor requires the simultaneous selection of cultivars that are physiologically profiled for efficient nitrogen utilization from this form of fertilizer ("stay-green" cultivar). The interaction of a selective cultivar with a high genetically targeted potential for nitrogen uptake from soil, combined with a targeted selection of nitrogen fertilizer, is important not only in terms of production, but also environmental and economic purposes.

12.
Pharmaceutics ; 14(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432664

ABSTRACT

Five varieties of Actinidia leaves (Geneva, Jumbo, Ken's Red, Kijivska Hibridna, and Sentyabraskaya) were analyzed. The profiles of active compounds were determined, namely quercetin, rutin, epicatechin, chlorogenic acid, and kaempferol, in the raw material. Suspecting that the raw material might prove important in the treatment of diabetes, the authors assessed the antioxidant activity and the ability to inhibit enzymes responsible for the development of diabetes (α-glucosidase and α-amylase). As a result of the conducted analysis, the Ken's Red variety was indicated as having the highest biological activity (DPPH IC50 = 0.332 ± 0.048; FRAP IC0.5 = 0.064 ± 0.005; α-glucosidase inhibition IC50 = 0.098 ± 0.007; α-amylase inhibition IC50 = 0.083 ± 0.004). In order to increase the efficiency of the extraction of active compounds from Ken's Red variety leaves, cyclodextrins (α-CD, ß-CD, and γ-CD) were used as extraction process enhancers. The obtained results showed a significant increase in the contents of extracted active compounds. In addition, the type of CD used enhanced the extraction of selected compounds (quercetin, kaempferol, rutin, chlorogenic acid, and epicatechin. This study shows that the application of cyclodextrin-based extraction significantly improved the leaf activity of the Ken's Red variety (DPPH IC50 = 0.160 ± 0.019; FRAP IC0.5 = 0.008 ± 0.001; α-glucosidase inhibition IC50 = 0.040 ± 0.002; α-amylase inhibition IC50 = 0.012 ± 0.003).

13.
Nutrients ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235552

ABSTRACT

The presented research evaluates the medical use potential of Lonicera caerulea leaves, which are waste plants in cultivating berries. The study's screening activity included the leaves of five varieties of Lonicera caerulea: Atut, Duet, Wojtek, Zojka, and Jugana. The microbiological analysis confirmed the safety of using Lonicera caerulea leaves without significant stabilization. Lonicera caerulea leaves standardization was carried out based on the results of the chromatographic analysis, and it showed differences in the contents of active compounds (loganic, chlorogenic and caffeic acids, and rutin), which are attributed to biological activity. For the Lonicera caerulea leaves varieties tested, the differences in the content of total polyphenol content, chlorophylls, and carotenoids were also confirmed. The screening of biological activity of five Lonicera caerulea leaf varieties was carried out concerning the possibility of inhibiting the activity of α-glucosidase, lipase, and hyaluronidase as well, and the antioxidant potential was determined. The defined profile of the biological activity of Lonicera caerulea leaves makes it possible to indicate this raw material as an essential material supporting the prevention and treatment of type II diabetes. However, this research showed that tested enzymes were strongly inhibited by the variety Jugana. The health-promoting potential of Lonicera caerulea leaves was correlated with the highest chlorogenic acid and rutin content in the variety Jugana.


Subject(s)
Diabetes Mellitus, Type 2 , Lonicera , Antioxidants/analysis , Antioxidants/pharmacology , Caffeic Acids/analysis , Carotenoids/analysis , Carotenoids/pharmacology , Chlorogenic Acid/analysis , Chlorogenic Acid/pharmacology , Fruit/chemistry , Hyaluronoglucosaminidase/analysis , Lipase , Lonicera/chemistry , Plant Leaves/chemistry , Polyphenols/analysis , Polyphenols/pharmacology , Rutin/analysis , Rutin/pharmacology , alpha-Glucosidases
14.
PLoS One ; 17(6): e0269369, 2022.
Article in English | MEDLINE | ID: mdl-35709188

ABSTRACT

Recently there have been tremendous efforts to develop statistical procedures which allow to determine subgroups of patients for which certain treatments are effective. This article focuses on the selection of prognostic and predictive genetic biomarkers based on a relatively large number of candidate Single Nucleotide Polymorphisms (SNPs). We consider models which include prognostic markers as main effects and predictive markers as interaction effects with treatment. We compare different high-dimensional selection approaches including adaptive lasso, a Bayesian adaptive version of the Sorted L-One Penalized Estimator (SLOBE) and a modified version of the Bayesian Information Criterion (mBIC2). These are compared with classical multiple testing procedures for individual markers. Having identified predictive markers we consider several different approaches how to specify subgroups susceptible to treatment. Our main conclusion is that selection based on mBIC2 and SLOBE has similar predictive performance as the adaptive lasso while including substantially fewer biomarkers.


Subject(s)
Genomics , Polymorphism, Single Nucleotide , Bayes Theorem , Biomarkers , Genetic Markers , Humans , Prognosis
15.
PLoS One ; 17(5): e0267483, 2022.
Article in English | MEDLINE | ID: mdl-35544552

ABSTRACT

Poor soil organic matter is one of the major causes of the deterioration of soil health. Most soils fertility is also decreased when enough organic carbon is not present in the soil. Maize is most susceptible to this poor soil fertility status. A significant amount of maize growth and yield is lost when it is cultivated in low organic matter and poor fertility soil. To overcome this issue organic amendments can play an imperative role. Biochar and vermicompost are organic amendments that can not only improve organic residues but also increase soil nutrient concentration. The current experiment was conducted to explore the sole and combined application of both organic amendments with recommended NPK fertilizer. Four treatments were tested i.e., control, biochar (BC1), vermicompost (VC1) and VC1+BC1 with and without nitrogen (N), phosphorus (P) and potassium (K) in the experiment. Results showed that VC1+BC1+NPK performed significantly best for improvement in maize plant height (6.25 and 3.00%), 1000 grains weight (30.48 and 29.40%), biological yield (18.86 and 43.12%) and grains yield (30.58 and 39.59%) compared to BC0+VC0+NPK and control respectively. A significant improvement in soil N, P and K also validated the efficacious role of VC1+BC1+NPK over BC0+VC0+NPK and control. Treatment VC1+BC1+NPK is recommended for the achievement of better maize growth and yield in poor organic matter soils. More investigations are suggested in variable climatic conditions to declare VC1+BC1+NPK as the best amendment compared to control for enhancing soil N, P and K status as well as maize productivity.


Subject(s)
Soil , Zea mays , Agriculture/methods , Charcoal , Fertilizers , Nutrients , Soil/chemistry
17.
Antioxidants (Basel) ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35204262

ABSTRACT

As a systemic disease, diabetes mellitus (DM) is characterized by the disruption of many glucose metabolic pathways. Therefore, it seems critical to study new therapies to support treatment to develop therapeutic systems that can operate across a broad metabolic spectrum. The current state of knowledge indicates an essential role of the gut microbiota in the development and course of the disease. Cornus mas fruits have demonstrated a rich biological activity profile and potential for application in the treatment of DM. As part of a preliminary analysis, the activity of four cultivars of Cornus mas fruits was analyzed. The cultivar Wydubieckij was selected as having the highest activity in in vitro conditions for further prebiotic system preparation. The study aimed to develop a unique therapeutic system based, first of all, on the mechanism of α-glucosidase inhibition and the antioxidant effect resulting from the activity of the plant extract used, combined with the prebiotic effect of inulin. The obtained system was characterized in vitro in terms of antioxidant activity and enzyme inhibition capacity, and was then tested on diabetic rats. The study was coupled with an analysis of changes in the intestinal microflora. The system of prebiotic stabilized Cornus mas L. lyophilized extract with inulin offers valuable support for the prophylaxis and treatment of DM.

18.
Brain Struct Funct ; 227(3): 1099-1113, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35038032

ABSTRACT

The ketogenic diet (KD) is a type of diet in which the intake of fats significantly increases at the cost of carbohydrates while maintaining an adequate amount of proteins. This kind of diet has been successfully used in clinical therapies of drug-resistant epilepsy, but there is still insufficient evidence on its safety when used in pregnancy. To assess KD effects on the course of gestation and fetal development, pregnant females were fed with: (i) KD during pregnancy and lactation periods (KD group), (ii) KD during pregnancy replaced with ND from the day 2 postpartum (KDND group) and (iii) normal diet alone (ND group). The body mass, ketone and glucose blood levels, and food intake were monitored. In brains of KD-fed females, FTIR biochemical analyses revealed increased concentrations of lipids and ketone groups containing molecules. In offspring of these females, significant reduction of the body mass and delays in neurological development were detected. However, replacement of KD with ND in these females at the beginning of lactation period led to regainment of the body mass in their pups as early as on the postnatal day 14. Moreover, the vast majority of our neurological tests detected functional recovery up to the normal level. It could be concluded that the ketogenic diet undoubtedly affects the brain of pregnant females and impairs the somatic and neurological development of their offspring. However, early postnatal withdrawal of this diet may initiate compensatory processes and considerable functional restitution of the nervous system based on still unrecognized mechanisms.


Subject(s)
Diet, Ketogenic , Animals , Animals, Newborn , Brain , Diet, Ketogenic/adverse effects , Eating/physiology , Female , Lactation , Pregnancy , Rats
19.
Antioxidants (Basel) ; 10(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34943048

ABSTRACT

Blackberry fruits are recognized as functional foods while blackberry leaves are outside this classification and they also contain active compounds with health-promoting potential. Therefore, the aim of this study was the phytochemical analysis of blackberry leaves of varieties (Chester, Loch Ness, Loch Tay and Ruczaj) and screening of their biological activity (antioxidant potential, possibility of inhibition of enzymes, anti-inflammatory and microbial activity). The following compounds from selected groups: phenolic acids (caffeic acid, ellagic acid, gallic acid, syringic acid), flavonols (quercetin, kaempferol) and their glycosides (rutin, isoquercetin, hyperoside) and flavon-3-ols (catechin, epicatechin) were chromatographically determined in the aqueous and hydroalcoholic leaves extracts. All tested blackberry leaves extracts showed antioxidant effects, but the highest compounds content (TPC = 101.31 mg GAE/g) and antioxidant activity (e.g., DPPH IC50 = 57.37 µg/mL; ABTS IC50 = 24.83 µg/mL; CUPRAC IC50 = 62.73 µg/mL; FRAP IC50 = 39.99 µg/mL for hydroalcoholic extracts) was indicated for the Loch Tay variety. Blackberry leaf extracts' anti-inflammatory effect was also exceptionally high for the Loch Tay variety (IC50 = 129.30 µg/mL), while leaves extracts of the Loch Ness variety showed a significant potential for microbial activity against Lactobacillus spp. and Candida spp. Summarizing, the best multidirectional pro-health effect was noted for leaves extracts of Loch Tay variety.

20.
Euro Surveill ; 26(39)2021 09.
Article in English | MEDLINE | ID: mdl-34596017

ABSTRACT

Routine genomic surveillance on samples from COVID-19 patients collected in Poland during summer 2021 revealed the emergence of a SARS-CoV-2 Delta variant with a large 872 nt deletion. This change, confirmed by Sanger and deep sequencing, causes complete loss of ORF7a, ORF7b, and ORF8 genes. The index case carrying the deletion is unknown. The standard pipeline for sequencing may mask this deletion with a long stretch of N's. Effects of this deletion on phenotype or immune evasion needs further study.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Poland
SELECTION OF CITATIONS
SEARCH DETAIL
...